Passive and active microrheology of hard-sphere colloids.
نویسندگان
چکیده
We performed passive and active microrheology using probe particles in a bath of well-characterized, model hard-sphere colloids in the fluid state over the whole range of volume fractions below the glass transition. The probe and bath particles have nearly the same size. Passive tracking of probe particles yields short-time self-diffusion coefficients. Comparison with literature data demonstrates that the interaction between probe and bath particles is hard-sphere-like. The short-time diffusivities yield one set of microviscosities as a function of volume fraction, which agrees with previous macrorheological measurements of the high-frequency viscosity of hard-sphere colloids. Using optical tweezers, we measure the force on a trapped probe particle as the rest of the sample is translated at constant velocity. This yields a second set of microviscosities at high Péclet numbers. These agree with previous macrorheological measurements of the high-shear viscosity of similar colloids, at shear-rates below the onset of shear-thickening.
منابع مشابه
Solvation Force in Hard Ellipsoid Molecular Liquids with Rod-Sphere and Rod- Surface Interactions
In previous work, one of us calculated the Solvation force of hard ellipsoid fluid with hard Gaussian overlap potential using hard needle wall interaction and non-linear equation proposed by Grimson- Rickyazen. In present work, using density functional theory and extended restricted orientation model, the solvation force of hard ellipsoid fluid in presence of more realistic rod- sphere and rod-...
متن کاملA simple paradigm for active and nonlinear microrheology
In microrheology, elastic and viscous moduli are obtained from measurements of the fluctuating thermal motion of embedded colloidal probes. In such experiments, the probe motion is passive and reflects the near-equilibrium linear response properties of the surrounding medium. By actively pulling the probe through the material, further information about material properties can be obtained, analo...
متن کاملMicrorheology and the fluctuation theorem in dense colloids
We present experiments and computer simulations of a “tracer” (or “probe”) particle trapped with optical tweezers and dragged at constant speed through a bath of effectively hard colloids with approximately the same size as the probe. The results are analyzed taking the single-particle case and assuming effective parameters for the bath. The effective microscopic friction coefficient and effect...
متن کاملOptical Microrheology of Biopolymers
We use passive and active techniques to study microrheology of a biopolymer solution. The passive technique is video tracking of tracer particles in the biopolymer, a technique which is well established. The active technique is based on rotating optical tweezers, which is used to study viscosity. A method to actively measure viscoelascity using time varying rotation of a particle trapped in opt...
متن کاملPassive and active microrheology for cross-linked F-actin networks in vitro.
Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 113 12 شماره
صفحات -
تاریخ انتشار 2009